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Abstract—Compared with stereo image depth estimation, find-
ing depth relations from a single image is less straightforward.
Moreover, the mapping between a single image and the depth
map is inherently ambiguous, and requires both global and
local information. In this project, we present a Multi-Scale Deep
Convolutional Neural Network for single image depth estimation.
The method we used in this project employed two deep network
stacks: a coarse global prediction based on the entire image, and
another to refines this prediction locally. This method is evaluated
on the NYU-depth v2 dataset and compares with several previous
works including network structures of AlexNet and ResNet.

Index Terms—Convolutional Neural Network, Depth Estima-
tion

I. MOTIVATION

Depth prediction from RGB images is a crucial topic in
robotics, virtual reality, and 3D modeling because it is bene-
ficial for understanding geometric relations within a scene. In
turn, such relations help extract more information from objects
and their environment, usually leading to enhancements in
current recognition projects, as well as speed up the devel-
opment of further applications, such as 3D modeling, physics
and support models, robotics, and potentially reasoning about
occlusions.

Nowadays, although many researchers have done much
research on estimating depth based on stereo images or
motion, there has been relatively little on predicting depth
from a single 2D image. However, in real-world practice,
the monocular case arises more often and it is reasonable to
expect a wide and convenient usage of single image depth
estimation. For example, images distributed on the web and
social media outlets, real estate listings, and shopping sites,
are all monocular cases. Therefore, we decided to focus on
depth prediction for monocular cases.

Depth prediction for the monocular image is more difficult
than stereo ones. Provided accurate image correspondences,
depth can be recovered deterministically in the stereo case.
With stereoscopic images, depth can be computed from local
correspondences and triangularization, while estimating the
geometry relationship of the camera positions will help with
the accuracy. By contrast, methods for inferring depth from
a single image have involved image segmentation, texture
variations, texture gradients, interposition and shading. It is
barely possible to get good result without machine learning
algorithms to automatically learn these complex tasks. Thus

X. Zhang , M. Fan , M Pan and L Zhu were with the Department of
Electrical and Computer Engineering, University of Michigan, Ann Arbor,
M1, 48109, USA e-mail: zhxiaoyu@umich.edu

in our work, we performed supervised learning using convo-
lutional neural network to achieve acceptable performance.

In this project, we present an approach for estimating depth
from a single image. We directly regress on the depth using a
neural network with two components: one that first estimates
the global structure of the scene, then a second that refines it
using local information. The network is trained using a loss
that combines /5 norm and scale-invariant error. We used raw
data of NYU-Depth V2 [1], which is shown in Fig.1, to train
our model, and validated our model on another dataset which
was provided by Professor Matthew Johnson-Roberson.

Fig. 1: Example of NYU dataset

II. PREVIOUS WORK

Stereo depth estimation has been a broadly used and exten-
sively investigated approach of recovering depth information,
using image pairs of the same scene to reconstruct 3D shapes.
Scharstein et al. [2] have provided a survey and evaluation
of many methods for 2-frame stereo correspondence. They
use techniques like matching, aggregation and optimization
to organize the system. Snavely et al. [3] apply a multiview
stereo method to a creative application, matching across views
of many uncalibrated consumer photographs of the same scene
to create accurate 3D reconstructions of common landmarks.

In order to obtain better results and relax the need for careful
camera alignment [4] [5] [6] [7], some machine learning



techniques can also be applied to stereo case. Konda et
al. [4] predict depth from stereo sequences by training a
factored autoencoder on image pathes. However, this approach
is dependent on the local displacements of the stereo.

Estimating depth from a single image has made impressive
progress these years. Many approaches has been tried and
applied in this area. Linear regression and a Markov Random
Field (MRF) is used by Saxena et al. [8] to predict depth from
a set of image features and 3D model generation on Make3D
[9] dataset. However, the system cannot give as good results
in less controlled settings for its dependence on horizontal
alignment of images. To improve their approach, they use
superpixels to enforce the consistency between neighboring
regions. Liu et al. [10], inspired by their work, solving the
problem of depth estimation along with semantic segamen-
tation, using predicted segmentation labels as constraints to
achieve better 3D reconstruction. Hoiem et al. [11] also
take use of categorizing of image regions into geometric
structures(ground, sky, vertical) and use it to compose a simple
3D model of the scene.

Then, Ladicky et al. [12] integrate semantic object labels
with monocular depth features. However, their system need
handcrafted features and the use of superpixels to segment
the image. Karsch et al. [13] provide a method to estimate
depths of static backgrounds from single images with a kNN
transfer mechanism based on SIFT Flow [14]. They improve
their results with motion information to better estimate moving
foreground subjects in videos. Although this achieves better
alignment, it needs the entire dataset at runtime and involves
an expensive alignment procedure.

On the contrary, Eigen et al. [15] presented a method
that learns a set of network parameters which are easy to
store and can be applied to real-time images. Their method
estimate depth map by employing two deep network stacks
as shown in Fig.2: coarse network makes a coarse global
prediction based on the entire image, fine-scale network refines
this prediction locally. In addition, AlexNet [16] and ResNet
[17] are also two typical Convolutional Neural Networks that
can be used for depth estimating.Their network structure are
shown in Fig.3 and Fig.4.The ResNet explicitly reformulate
the layers as learning residual functions with reference to the
layer inputs, instead of learning unreferenced functions. We
follow Eigen’s approach, but we reduce one layer for each
partial network. However, We achieve some accuracy as them
with less computational complexity naturally.
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Fig. 2: Original network by Eigen et.al

III. PROBLEM STATEMENT

Our work provides a solution to estimating pixel-wise depth
information from single RGB images. In our problem, we have
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Fig. 3: Modified Alexnet network for depth estimation
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Fig. 4: ResNet-18 network for depth estimation

access to a typical RGB image and are asked to give a depth
estimation for each pixel of the image. Then, we evaluate our
method in both quantitative metric comparison and qualitative
visualization comparison. More detail of both approach and
evaluation will be in the following section.

The RGB-D data format of Kinect serves as a perfect
training set of our problem, as the invalid depth information of
pixels could be easily extracted and margined out, while data
collected by RGB camera and Lidar could also be a good
data set for our models, since we can use bilateral filter to get
pixel-wise estimated depth information.

IV. APPROACH
A. Model Architecture

Our network contains two components to extract different
information from two different scales, shown in Fig.5. The
first one is a coarse-scale network, which predicts the depth
of the scene at a global level. The second one is a fine-scale
network, which focuses on refined details within local regions.
As to coarse network, we used original images as input. As for



the fine-scale network, we passed the original image through a
convolution layer and combined it with the output of the coarse
network as the first-layer image features. In this way, the local
network has access to both origin image and global prediction,
which enables the network to incorporate finer-scale details.
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Fig. 5: Our Modified Eigen Network Structure

1) Global Coarse-Scale Network: The goal of the coarse-
scale network is to predict the overall depth map structure
using a global view of the scene. As shown in Fig.5, To get
the entire image in their field of view contained, the upper
layers of this network are fully connected. The lower and
middle layers combine information from different parts of the
image to a small spatial dimension via max-pooling operations.
Therefore, the network can integrate a global understanding of
the full scene to estimate the depth. By this way, we can make
the best use of cues such as vanishing points, object locations,
and room alignment, to understand single 2D images. By
contrast, a local view, which is commonly used in stereo
matching, is not enough to notice important features such as
these.

As illustrated in Fig.5, there are four feature extraction
layers of convolution and max-pooling, followed by two fully
connected layers, in the global-coarse-scale network. The
input, feature map and output sizes are also given in Fig.5.
The final output is at 1/4-resolution compared to the input,
which is downsampled from the original images by a factor
of 2, and corresponds to the input (as we describe later, we
use convolutional layers with same output size as the input,
which may introduce error on boarder areas. The error are
relatively small and would not cause significant defects of the
performance evaluation).

Because the spatial dimension of the output is larger than
that of the topmost convolution feature map, we chose to
make the top full layer to learn templates over the larger area
before passing the prediction to the fine network, instead of
limiting the output to the feature map size by upsampling. It
performs better than the upsampled output of the extracted
features prediction.

We used rectified linear units for activations at all hidden
layers.

2) Local Fine-Scale Network: After we get the overall
depth map structure using the coarse-scale network, we let
image go through a second, fine-scale network to make local
refinements, aligning the coarse prediction it receives with
local details such as object and all edges.

This fine-scale network has three convolution layers and
takes a pool step to edit the first layer edge features to
get the refined output, which is a relatively high-resolution
output at 1/4 of the size of input images. The original image

is fed in to the first layer of this network (first fine-scale
network block in Fig.5 while the output of coarse network
is fed in as an additional low-level feature map to the second
layer, concatenated with the pooled output of first fine-scale
layer (second fine-scale network block in Fig.5. Comparing
to previous work from Eigen et.al [15], we found out that the
affects of the output of the coarse layers should be emphasized,
thus we eliminated the number of channels produced directly
from origin input image. The rest layers gives same output
size using zero-padded convolution. Since the depth of each
pixels are positive, we simply use rectified linear activation
function for all the activations of the hidden units.

Aiming at extract the detail depths information, compared
to using the entire image pixels in coarse-scale network, the
fine-scale network views only 49249 pixels of the input image,
while the last three convolutional layers which deals with both
coarse output and origin image actually take a 13213 area into
consideration as generating the final depth result for each pixel.

3) training: We explored several tricks about training this
network.

We trained the full network at once at first, and got accept-
able result. while the output of the coarse layers expresses
large-scale information, it’s not easy for human to recognize
and explain the correctness of our design of using multi-scale
network to perform the task.

We then trained the coarse network using the resized ground
truth of depth images, and as we later started training the fine-
scale network, we did not backpropagate through the coarse
network, maintaining the coarse-scale output fixed. We can see
from Fig.6 that the output of the coarse network gives a good
estimation of large scale depth estimation, while the total error
of the overall output decreases as we apply this trick, which
we will describe later.

Fig. 6: coarse result with pretrained and without

B. Scale-Invariant Error

We used a combination of [5 error and scale-invariant error
to measure the relationships between points in the scene,
irrespective of the absolute global scale. We define the scale-
invariant mean squared error as:

A
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where y; is predicted depth map, y is ground truth, ¢ is the
index of each n pixels. We should notice that since there
exists unavailable depth data points in raw data from our
dataset, only those pixels with available depth information are
considered as computing the error. Setting A = 0 reduces the
loss to element-wise [5 norm, while A = 1 is the scale-invariant
error exactly. In practice, we choose A = 0.5 to achieve a
balance between both errors.

The following equivalent forms provides an additional ways
to view metric.

A
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The equation above expresses the error by comparing re-
lationships between pairs of pixels ¢,j in the output: the
difference between each pair of pixels should be a bit of
different in prediction and ground truth for lower error. Our
error function added a penalty —% > ; d;d; to the original
lo error, which credits when two pixels with same direction
are estimated to be opposite. In conclusion, if a prediction has
mistakes which is consistent with another, it is am imperfect
prediction.

In addition to the combined scale-invariant error, we also
measure the performance according to several error metrics as
comparison.

C. Training Loss

In addition to performance evaluation, our combined error
function could also be used as training loss. We define training
loss of each sample as the following equation:

A
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where d; = y; —y; and X\ € [0, 1], logy is log of prediction.
We can change A\ to modify the weight of elementwise lo,
while A = 1 is the scale-invariant error exactly. We take the
average, A = 0.5, finding that this produces good absolute-
scale predictions while slightly improving qualitative output.

V. EXPERIMENTS

In this section, we give qualitative results of our models
and quantitative metric evaluations. All experiments are im-
plemented on a desktop computer with GTX 1080 graphic
card, core i7 6700k CPU and 32GB memory.

Since our model was originally inspired by Eigen’s Net-
work, we compared our result with the network proposed in
their paper. Besides, we also implemented a network based
on ResNet-18 in Fig.4 and a network based on Alexnet in
Fig.3, and compared our result with these networks. Although
ResNet can be as deep as 152 layers, we only compared
our method with ResNet-18 because they have similar model
complexity.

TABLE I: metirc evalution results

[ t <125 [ Abs rel diff [ RMSE

AlexNet 0.9070 0.0899 0.1051%
ResNet18 0.8954 0.1101 0.1076%
Eigen 0.8951 0.1033 0.1009%
Eigen-modified 0.9010 0.0877 0.0920%

A. Dataset

We use NYU-Depth v2 Dataset [1] for this task. This data
set is composed of video sequences from a variety of indoor
scenes as recorded by both the RGB and Depth cameras from
the Microsoft Kinect. We train our model on a subset of this
NYU-Depth v2 dataset. Then ,we also validated our model
on another dataset which was provided by Professor Matthew
Johnson-Roberson.

B. Evaluation Metrics

For ground truth depth images y and predicted images ¢,
we evaluate our method on three different metrics:
Percentage of pixels with relative error (larger means better
performance)

t= max(g, g) < 1.25
yy

Absolute Relative Difference:

y—y
e=|=—=|

Root Mean squared Error(RMSE):

1 .
eZ\ij—yW

As shown in the Metric evaluation results Table.I, our
modified-Eigen network is slightly better than the original
Eigen network according to the evaluation, while surpassing
the performance of Alexnet and resnet.

C. Strengths

We can also see from Fig.7 that our modified Eigen network
gives best prediction result, taking smooth and accuracy into
account.

All the predicted results could sometimes cover the invalid
pixels of the raw Kinect data, since the network can learn to
predict the depth information from other parts of the dataset,
which enables the neural networks to fix the raw depth image
from kinect.

Our model uses less parameter than original Eigen network,
and gets better performance, which indicates that our network
structure is more suitable for predicting depths.

Besides, we also trained our model and original Eigen
model on another dataset from Professor Matthew Johnson-
Roberson from the University of Michigan. This dataset con-
tains complex outdoor scenes from computer simulation. The
predicted depth images and the original depth images are
shown in Fig.8. As we calculate the error of our prediction
versus Eigen’s network, our work have better performance on
this more complex dataset, which indicates that our network
structure is more reasonable.
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Fig. 7: Prediction results

D. Weakness

Estimating depth from a single image is a challenge task
for the ambiguity along with different complicated lighting
and shading conditions of a single image. Also, different
datasets may have different kinds of assumptions which may
increase the difficulty of directly applying one model trained
on one dataset to another dataset and give as good results.
In our experiment, we train our model on a subset of the
NYU-Depth V2 dataset, which breaks many assumptions from
general cases. Besides, NYU-Depth V2 dataset consists mainly
indoor images while there are datasets and real-life scenes
that contains mainly outdoor images with complicated lighting
conditions. Therefore, our model may have relatively poor
performance on some other datasets.

Apart from applying to different datasets, our result still has
spaces of improvement compared to ground truth depth image.
Although we achieved better performance than some tradi-
tional convolutional neuron networks such as VGG, AlexNet,
our result can still overlook some small details showed in
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Fig. 8: prediction result on another dataset

ground truth map. On the other hand, because of using a fine-
scale network to extract local details, sometimes the output
also include some texture edges.

Besides, because we have limited calculation power, only
small-scale networks could be examined. To achieve state-of-
the-art performance, we may need more complex structure
for depth estimation, and our network structure may not be
suitable to expand.

E. Spaces of Improvement

To achieve a more state-of-the-art result, we can extend our
method to add more scales to the system, such as successive
finer-scaled local networks and extract the depth information
which we cannot get from this model. We can also incorporate
other 3D geometry information such as semantic segmentation
and surface normal to help improve overall performance.
Also, we can feed in our training system with images from
different datasets which include complicated outdoor lighting
conditions after taking proper preprocessing step to get better
performance on different datasets.

VI. CONCLUSION

Our system accomplishes depth prediction from single
images through the use of two deep networks, one that
estimates the global depth structure, and another that refines it
locally at finer resolution. We achieve better results than some
neural network structures from previous work with similar
amount of parameters. In future work, we plan to extend our
method to incorporate further 3D geometry information, such
as surface normals. We’ll also try to explore the performance
of multi-scale neural networks on different types of tasks,
and investigate some more complex network structures with
stronger hardwares, if possible.
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